
Guide to
Measuring Impact
with Agile Metrics

AGILE | DATA | DIGITAL | MODERNIZATION

http://www.excella.com
https://www.excella.com/capabilities/agile-transformation
https://www.excella.com/capabilities/artificial-intelligence-ai
https://www.excella.com/capabilities/digital-service-delivery
https://www.excella.com/capabilities/modernization

Let’s focus our attention on four categories of Agile metrics that
can provide actionable and meaningful insight, and help us focus on business outcomes:

In an Agile context, it’s important to collect data to inform decision-making and enable continuous improvement. Not
all metrics are created equal; however, some metrics can do more harm than good. One of the best recent sources of
information about what consistently high-performing organizations measure themselves against is the 2019 Accelerate
State of DevOps Report, compiled by Data Scientist Nicole Forsgren, who is also one of the authors of the book
Accelerate. The “big four” metrics from that report are among those that we recommend, and which we’ll describe further,
along with many others: 1. Deployment frequency; 2. Lead time for changes; 3. Change failure rate; 4. Time to restore
service.

At Excella, we have partnered with numerous federal agencies to help them on their Agile journey. We follow an adaptive
approach, continuously seeking to improve, by listening to our business partners, running experiments, and making data-
driven decisions based on the results from those experiments. Knowing what to measure, and what those measurements
can and cannot tell us, is an Excella core competency. Our expertise is based on our own experiences as practitioners,
along with careful application of metrics such as those that are included in the State of DevOps Report.

Quality
Metrics

Value
Metrics

Collaboration
Metrics

Delivery
Metrics

https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
https://itrevolution.com/book/accelerate/
https://www.excella.com/markets/federal

Examples of Collaboration Metrics:
Effectiveness
• Number of Cross-Team Dependencies Identified/Closed. Count

the number of dependencies that exist, where each additional
dependency significantly increases the risk that work will not be
finished when expected; and count the number of cross-team
dependencies closed, where each elimination of a dependency
significantly decreases the risk that work will not be finished when
expected. (Focused Objective: Dependency Types and Impact)

• Mean Cycle Time of User Stories with Dependencies: Collect data
on how long it takes to complete each user story (its “cycle time”),
and compare the cycle times for user stories with and without
dependencies. (Focused Objective: Calculating Throughput and
Cycle Time History)

Happiness/Satisfaction
• Organizational Satisfaction Score: Collect data from a broad

cross-section of people in the organization and generate scores
that highlight which things are going well, and which things need
attention, at the organizational level. (Crisp: Leadership and Team
Health Checks)

• Team Satisfaction Score: Collect data from individual teams and
generate scores that highlight which things are going well, and
which things need attention, at the team level. (Atlassian: Health
Monitor)

Collaboration
Metrics
Collaboration Metrics provide visibility into whether
an Agile team is working together effectively, both
internally (intra-team), and externally (cross-team),
and also provide a pulse check on team morale.

Unlike many of the other metrics categories that we
describe, Collaboration Metrics tend to be leading
indicators, offering early warning signs of potential
areas of trouble.

At Excella, we place great importance on
partnering with our clients to gather data
that provides visibility into team health
and organizational health, and this sets us
apart from many of our competitors.

https://github.com/FocusedObjective/FocusedObjective.Resources/blob/master/Canvas and Forms/Dependencies.pdf
https://github.com/FocusedObjective/FocusedObjective.Resources/raw/master/Exercises/Calculating Throughput and Cycle Time History.xlsx
https://github.com/FocusedObjective/FocusedObjective.Resources/raw/master/Exercises/Calculating Throughput and Cycle Time History.xlsx
https://blog.crisp.se/2019/03/11/jimmyjanlen/health-checks-for-teams-and-leadership
https://blog.crisp.se/2019/03/11/jimmyjanlen/health-checks-for-teams-and-leadership
https://www.atlassian.com/team-playbook/health-monitor
https://www.atlassian.com/team-playbook/health-monitor

Do team members proactively
seek to minimize the number of
dependencies that they have on
other groups/teams?

Do team members feel empowered
to discover and develop solutions
to business problems?

Do team members feel that they
can safety express their views, and
are they confident that those views
are heard and acted upon?

Questions that Collaboration Metrics help answer:

Collaboration Metrics to Try and Collaboration Metrics to Avoid

Try This Avoid This

Evaluate cycle times, on an ongoing basis
Compare the cycle times of one team with the cycle times of
another team

Collect data about the happiness of people in the organization
Single out individual teams because their morale appears to
be lower (instead, look for root causes of broadly applicable
organizational dissatisfiers)

Examples of Delivery Metrics:
Delivery Cadence
• Deployment Frequency: Collect data on the relative

frequency with which new functionality is made available
to users. (CircleCI: How Often Does Your Team Deploy?)

• Lead Time: Collect data on how much time elapses from
the moment a customer first requests a feature to the
moment that the feature is available to that customer for
use. (GoCD:What Lead Time Is)

System Availability
• Change Failure Rate: Collect data on the relative

frequency with which a deployment results in the
immediate need to correct a problem caused by that
deployment. (CircleCI: What does change fail rate tell us?)

• Mean Time to Detect (MTTD)/Mean Time to Repair
(MTTR): Collect data on how long it takes to detect that a
problem exists, and how long it takes to correct a problem
after it has been detected. (AlertOps: MTTD vs MTTF vs
MTBF vs MTTR)

Delivery
Metrics
Delivery Metrics provide visibility into the
relative frequency of deployment of software
features to Production. As such, Delivery Metrics
focus on the ability of an organization to deliver
at a consistent, sustainable pace.

Delivery Metrics tend to be lagging indicators,
giving us insight into the maturity of our tools
and processes that govern the management
of code artifacts and monitoring of physical or
virtual infrastructure.

https://thenewstack.io/measuring-engineering-velocity-deploy-frequency-as-a-vital-sign-of-devops-health/
https://www.gocd.org/2019/01/14/cd-metrics-deployment-lead-time/
https://circleci.com/blog/feedback-loops-the-key-to-improving-mean-time-to-recovery/
https://alertops.com/mttd-vs-mttf-vs-mtbf-vs-mttr/
https://alertops.com/mttd-vs-mttf-vs-mtbf-vs-mttr/

How many running, tested units
of work can we reliably deliver
during a Sprint?

How stable and reliable is our
deployment pipeline?

How stable and reliable are code
and other artifacts that we deploy
to Production?

Questions that Delivery Metrics help answer:

Delivery Metrics to Try and Delivery Metrics to Avoid

Try This Avoid This

Evaluate lead times, on an ongoing basis
Compare the lead times of one team with the lead times of
another team

Leverage system availability data to identify areas for
improvement

Use a deployment or system failure as a reason to single out an
individual or team for blame

Examples of Quality Metrics:
Defects
• Defect Density: Number of Defects by Module: Count the number of

defects that exist in a particular software module (often counted based
on number of defects per 1,000 Lines of Code (KLOC). (SeaLights: Defect
Density: Context is King)

• Defect Escape Rate: Count the number of defects that are opened in
a particular component, where the defects are opened after the Sprint
has ended during which the component was created or modified.
(LeadingAgile: Escaped Defects)

Technical Debt
• Amount of Time Set Aside for Code Refactoring (per User Story): Capture

data on the amount of time during which code refactoring is done, during
initial development and/or during peer code review. (Mountain Goat
Software: The Economic Benefit of Refactoring | Tushar Sharma: How to
Track Code Smells Effectively)

• Number of User Stories or Defects Created to Address Technical Debt:
Count how many user stories or defects are opened to address shortcuts
that had to be taken due to time constraints; related metrics that can
help uncover technical debt via code analysis tools include cyclomatic
complexity, code coverage, SQALE rating, and rule violations. (Excella: The
Technical Debt Management Plan | Christiaan Verwijs: How to Deal with
Technical Debt in Scrum)

Test Coverage
• Test Automation Coverage Level: Collect data on the percentage of the

code base that is covered by automated tests, by dividing the total test
coverage by the test automation coverage. (LogiGear: 5 Useful KPIs for
Test Automation)

• Unit Test Coverage Level: Collect data on the percentage of the code base
that is covered by unit tests. (SeaLights: Code Coverage vs Test Coverage)

Quality
Metrics
Quality Metrics provide visibility into the
extent to which the products that we deliver
work as they are intended to work.

Some quality metrics, such as unit test
coverage, are leading indicators. For
instance, if we take it as a given that unit
tests are testing something meaningful,
execution of unit tests can prevent problems
from surfacing later. Other quality metrics,
such as Defect Escape Rate, are lagging
indicators, because they tell us after the fact
that we have a gap in our testing approach.

https://www.sealights.io/code-quality/defect-density-context-is-king/
https://www.sealights.io/code-quality/defect-density-context-is-king/
https://www.leadingagile.com/2018/09/escaped-defects/
https://www.mountaingoatsoftware.com/blog/4-steps-to-persuade-a-product-owner-to-prioritize-refactoring
https://www.mountaingoatsoftware.com/blog/4-steps-to-persuade-a-product-owner-to-prioritize-refactoring
https://medium.com/@tusharma/how-to-track-code-smells-effectively-48dbf5ba659d
https://medium.com/@tusharma/how-to-track-code-smells-effectively-48dbf5ba659d
https://www.excella.com/insights/the-technical-debt-management-plan
https://www.excella.com/insights/the-technical-debt-management-plan
https://medium.com/the-liberators/how-to-deal-with-technical-debt-in-scrum-f4ec3481eabb
https://medium.com/the-liberators/how-to-deal-with-technical-debt-in-scrum-f4ec3481eabb
https://www.logigear.com/blog/test-automation/5-incredibly-useful-kips-for-test-automation/
https://www.logigear.com/blog/test-automation/5-incredibly-useful-kips-for-test-automation/
https://www.sealights.io/code-quality/code-coverage-vs-test-coverage-pros-and-cons/

To what extent does the software
work as intended?

To what extent do we give
ourselves sufficient time to build
things right the first time?

To what extent are there
automated checks in place to
surface anomalies before they
become significant problems?

Questions that Quality Metrics help answer:

Quality Metrics to Try and Quality Metrics to Avoid

Try This Avoid This

Seek to detect and correct anomalies in real time, during a Sprint
Open defects for anomalies that are detected during a Sprint
(fix them on the spot!)

Use multiple testing approaches to check for correct software/
system behaviors

Create incentives for opening as many defects as possible

Make time available for code refactoring, which greatly reduces
the likelihood that technical debt will be created

Place blame on teams when it becomes difficult to improve or
maintain existing code, due to the existence of technical debt

Consider the extent to which different parts of the code base have
sufficient test coverage

Assume that a high test coverage number is a guarantee of
success (some tests may have been commented out or lack
sufficient depth)

Examples of Value Metrics:
Customer Satisfaction
• Customer Effort Score (CES): Capture data about a customer’s

experience, based on how much time was required by that customer
to achieve a goal, such as getting a question answered, an issue
resolved, or a product purchased/returned. (Retently: What is CES
and How to Measure It)

• Customer Satisfaction Score (CSAT): Capture customer survey
data, divide the positive responses by the negative responses, and
multiply by 100. (Emolytics: CSAT: The Happy Customer KPI)

• Net Promoter Score (NPS): Capture customer survey data for a
given group, total the number of people in the group and divide it
by the number of survey responses, and subtract the percentage
of respondents who are Detractors from the percentage of
respondents who are Promoters. (Hotjar: What is NPS?)

Value Delivery
• Return on Investment (ROI): Divide the amount of money produced

by a new product or improvement to an existing product by how
much money was spent to build or improve that product. (Xpedia:
Calculating ROI for Software Development)

• Units of Value Delivered per Release: Count the number of finished
work items in a Release, and assign a value score based on that
number. (Folding Burritos: Measuring Customer Value in a Software
Product)

Value
Metrics
Value Metrics provide visibility into the extent
to which the products that we deliver enable
customers to achieve their goals, and the
extent to which our investments provide the
returns that we expect.

Value metrics, especially those associated with
Customer Satisfaction, are lagging indicators,
because some time needs to elapse to give
customers sufficient time to interact with a
new product, or to experience changes to an
existing product.

https://www.retently.com/blog/customer-effort-score/
https://www.retently.com/blog/customer-effort-score/
https://blog.emolytics.com/customer-experience/customer-satisfaction-score-csat-kpi/
https://www.hotjar.com/net-promoter-score/
http://www.xpedia.co.za/calculate-roi-software-development/
http://www.xpedia.co.za/calculate-roi-software-development/
https://foldingburritos.com/articles/2015/04/08/customer-value-in-a-software-product/
https://foldingburritos.com/articles/2015/04/08/customer-value-in-a-software-product/

To what extent do we deliver
solutions that customers
consider usable?

To what extent are customers
satisfied with the solutions that
we deliver?

To what extent are internal
stakeholders satisfied with the
solutions that we deliver?

Questions that Value Metrics help answer:

Value Metrics to Try and Value Metrics to Avoid

Try This Avoid This

Collect customer satisfaction data on a consistent cadence
Measure “success” only on the basis of traditional project
management measures, such as “on time and on budget”

Collect data on how much work (and by extension, how much
value) each team finishes during a particular time frame

Compare how much work one team completed with how much
work another team completed

AGILE | DATA | DIGITAL | MODERNIZATION

Find us on social

Conclusion
By taking a balanced perspective, being sure to include Collaboration Metrics (which often get little if any attention),
and including Delivery, Quality, and Value Metrics, we have a strong foundation on which to build. As the authors
point out on page 9 of the 2019 Accelerate State of DevOps Report:

Excella is an Agile technology firm helping leading organizations realize their future through the power of
technology. We work collaboratively to solve our clients’ biggest challenges and evolve their thinking to help
them prepare for tomorrow. Together we transform bold ideas into elegant technology solutions to create real
progress. Learn more at www.excella.com.

Remember to accelerate your transformation by starting with a solid foundation

and then focusing on the capabilities that are constraints: What capabilities cause

the biggest delays? What are the biggest headaches? Where are the biggest

problems? Pick three to five and dedicate resources to solving these first. Don’t

worry if you still have problems; by focusing on the biggest problems now, you

remove bottlenecks, discover synergies, and avoid unnecessary work.

http://www.excella.com
https://www.excella.com/capabilities/agile-transformation
https://www.excella.com/capabilities/artificial-intelligence-ai
https://www.excella.com/capabilities/digital-service-delivery
https://www.excella.com/capabilities/modernization
https://www.linkedin.com/company/excella-consulting
https://www.facebook.com/excellaconsulting
https://www.instagram.com/excella.co/
https://twitter.com/excellaco
http://www.excella.com
https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
http://www.excella.com

